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Abstract
Exceptional points for a two-dimensional matrix Hamiltonian that breaks
time reversal symmetry are revisited. Particular attention is paid to C-points
where the wavefunction exhibits circular polarization. They are different from
exceptional points if and when time reversal symmetry is broken, or in crystal
optics, when the crystal is optically active.

PACS numbers: 03.65.Vf, 02.30.−f, 02.10.Yn, 02.40.Xx

It has been discussed in [1] that there are, for a general crystal, different types of singularities
with different physical manifestations. In particular, when the crystal is optically active, the
chirality changes the symmetry of the dielectric tensor. As a result, the wavefunctions at
the exceptional points (EP) no longer give rise to a circularly polarized state [2]—that is to
the form {±i, 1}—whereas circular polarization does occur at points different from the EPs,
called C-points in [1]. In [3] a calculation explains why the C-points are statistically expected
to be close to the EPs. In view of the close formal and physical similarity of chiral crystals
and time reversal symmetry breaking Hamiltonians we here address the same problem using
the notation of a previous paper [4]. The present paper refrains from repeating a statistical
calculation, yet it is expected to further elucidate the fascinating physics of this general topic,
and the different parametrization appears appropriate for an experiment pending [5].

We begin with the familiar setting H0 + λH1 with non-commuting Hermitian 2 × 2
matrices H0 and H1. By analytic continuation in λ of the spectrum Ek(λ) and the state vectors
|ψ(λ)k〉 the EPs are found as square-root singularities where the two energy levels and the
state vectors coalesce. If time reversal symmetry is broken by H0 and/or H1 a richer structure
emerges [4]; we briefly recapitulate the results of [4] and expand where appropriate for the
present paper.

Using the form

H = H0 + λH1 where

Hk = U(φk, τk)DkU
†(φk, τk), k = 0, 1

(1)

0305-4470/06/3210077+04$30.00 © 2006 IOP Publishing Ltd Printed in the UK 10077

http://dx.doi.org/10.1088/0305-4470/39/32/S09
http://stacks.iop.org/JPhysA/39/10077


10078 W D Heiss

with

U(φ, τ) =
(

cos φ −sin φ eiτ

sin φ e−iτ cos φ

)
(2)

and Dk being real diagonal matrices but not multiples of the unit matrix, the EPs are found at

λEP = q exp(±2iβ) (3)

with

cos β =
√

(cos φ0 cos φ1)2 + (sin φ0 sin φ1)2 + 2 cos φ0 cos φ1 sin φ0 sin φ1 cos(τ0 − τ1),

q = −D0(1) − D0(2)

D1(1) − D1(2)

and Dk(i) denoting the entries of Dk .
Note that, for the special case τ0 = τ1 (denoted by τ below), it is β = φ0 − φ1. Only for

this particular case, the eigenfunctions at the EP are given by (up to a factor)

|ψEP〉 =
(

±i eiτ

1

)
, (4)

and they retain their form under any basis transformation of the form U(φ, τ). In other
words, the particular choice of the basis that would render H0 diagonal does not alter the form
of (4). Note also, that in this special case, the time reversal operator T is simply the complex
conjugation K. This simple form has to be generalized into a general anti-unitary operator
when deviating from the special case τ0 = τ1.

In fact, we first observe that for τ0 �= τ1, the state vector |ψEP〉 does depend on the basis
chosen. Using, for instance the basis in which H0 is diagonal, we consider

H̃ = D0 + λU †(φ0, τ0)H1U(φ0, τ0) (5)

which yields

∣∣ψH̃
EP

〉 =
(

±i eiξ

1

)
(6)

where ξ is a function of φ0, τ0, φ1 and τ1. Its explicit form is of little interest here, it is given
in [4]. It can never be zero except when τ0 = 0 = τ1. Secondly we note that the time reversal
operator is now given by the more complicated form T = U †(φ0, τ0)KU(φ0, τ0) being of
the general anti-unitary form T = ŨK with the unitary operator Ũ = U †(φ0, τ0)U

∗(φ0, τ0)

where the asterisk denotes complex conjugation. Note that Ũ is basis dependent. We conclude
that, as soon as time reversal invariance is broken, the state vector at the EP can no longer
have the simple form of a pure circular polarization. Transforming back to the original basis,
we would consider∣∣ψH

EP

〉 = U(φ0, τ0)
∣∣ψH̃

EP

〉
being a more complicated expression given in [4]. For τ0 �= 0 �= τ1, the ratio of the two
components can be any complex number (except ±i) depending on the parameters φ0, τ0, φ1

and τ1. Particular choices yield special cases such as a pure linear polarization, e.g. {±1, 1}
or even {0, 1} and {1, 0}.

Recall that at the EP there is only one eigenvector and that the norm 〈ψ̃EP|ψEP〉 vanishes
(we denote by 〈ψ̃EP| the left eigenvector of H, or |ψ̃EP〉 is the eigenvector of H0 + λ∗

EPH1).
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We now turn to the C-points [1, 3] where one eigenfunction is of the form {±i, 1}. As the
requirement puts a condition on the state vector, it is expected that the values λC being sought
are basis dependent. In the basis employed in (1) we find

λC = q
cos 2φ0 ± i cos τ0 sin 2φ0

cos 2φ1 ± i cos τ1 sin 2φ1
(7)

with same q as in (3).
Of course, for τ0 = τ1 = 0, that is when both, H0 and H1 are real, we retrieve (3) with

β = φ0 − φ1 and the eigenvector has the form {±i, 1}. In other words, the C-points and the EPs
coincide only if τ0 = τ1 = 0. These two significant points—the EPs and the C-points—are
always different as soon as either τ0 or τ1 or both are switched on, that is as soon as time
reversal invariance is broken. Also, the lowest order deviation of the C-point from the EP is
quadratic in τ0 and τ1 as is found in [3]. An interesting point is that λC can occur at any real
value (thus giving rise to real energies) for the special case τ0 = τ1 = π/2. This is in stark
contrast to an exceptional point occurring always only at complex values for Hermitian H0

and H1. If λC is real, both eigenstates are circularly polarized, the one being {+i, 1} and the
other {−i, 1}. Note that for the general case, when both λC are complex, only one is accessible
in the laboratory as only one is associated with an energy having a negative imaginary part;
whether the corresponding state vector is {+i, 1} or {−i, 1} depends on the parameters. If these
parameters can be controlled in the lab, either choice can be achieved.

For completeness we discuss the basis used in (5). To emphasize the basis dependence
and thus the difference to the result in (7) we use the symbol λc instead of λC . The general
expression is somewhat clumsy, its inverse reads

(λc)
−1 = −1

q

{(
cos

τ0 − τ1

2

)2

(cos(2φ0 − 2φ1) ∓ i cos τ0 sin(2φ0 − 2φ1))

+

(
sin

τ0 − τ1

2

)2

(cos(2φ0 + 2φ1) ∓ i cos τ0 sin(2φ0 + 2φ1))

± i sin(τ0 − τ1) sin τ0 sin(2φ1)

}
(8)

but the special case τ0 = τ1 simplifies to

λc = −q

cos 2(φ0 − φ1) ∓ i cos τ sin 2(φ0 − φ1)
. (9)

The whole discussion of the previous paragraph applies verbatim. It is interesting to note that
expansion of (8) in powers of τ0 and τ1 also yields odd powers in τ0 or τ1; however, the sum
of the powers is always even.

To summarize: the C-points are always different from the EPs if (and only if) time
reversal symmetry is broken, that is when either H0 or H1 is non-real, i.e. when either τ0 or τ1

is nonzero. In contrast to the EPs the C-points can occur on the real axis. While the EPs are
basis independent, the C-points do depend on the basis considered (λc is different from λC).
In an experiment such dependence can mean that one quantity (say the electric field vector)
is circularly polarized at one parameter point while another (say the magnetic field vector) is
circularly polarized at another point.

We conclude this paper by emphasizing that, while the C-points are of special physical
interest, they do not constitute a singularity of the operator as the EPs do. In fact at any point
in the λ-plane, except at the EPs, we have a complete bi-orthogonal system in that∑

k

|ψ(λ)k〉〈ψ̃(λ)k|
〈ψ̃(λ)k|ψ(λ)k〉

= 1. (10)
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This breaks down only at the EP where |ψ(λEP)1〉 becomes aligned to |ψ(λEP)2〉, and their
respective scalar products vanish.
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